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Abstract

A goal of this paper is to explore differ-
ent ways of implementing distributed simu-
lations. Distributed simulation grew out of
sequential simulation, and it is possible that
the way we think about distributed simulation
is unduly influenced by its sequential origins.
To free ourselves from unnecessary restrictions
on the way we design distributed simulations,
in this paper we define the distributed simu-
lation problem somewhat differently than in
the literature. We propose the concepts of
“knowledge” and “conditional knowledge”, to
help us obtain a general framework to rea-
son about distributed simulations without too
close a coupling with any specific implementa-
tion method. The framework appears helpful
in designing new ways of distributed simula-
tions.

*supported by ONR Grant Nos. N00014-86-K-
0466, N00014-87-K-0510, and the Sherman Fairchild
Foundation

Empirical studies of distributed simulations
report widely varying results: some studies re-
port improvements in speed that are almost
linearly proportional to the number of com-
puters in the system, while other studies re-
port that distributed simulation is even slower
than sequential simulation. The framework
proposed in this paper seems to help in ex-
plaining the wide differences observed in em-
pirical studies.

Using our framework, we attempt to suggest
properties that efficient “general-purpose” dis-
tributed discrete-event simulations must have.

The paper assumes little prior knowledge of
the literature on simulation or distributed sys-
tems. We hope that the paper will serve as a
tutorial in addition to providing additional in-
sight.



1 INTRODUCTION

This paper is an informal exploration of
methods for implementing distributed simula-
tors as described in [Chandy and Misra 1979,
Chandy and Misra 1981, and Jefferson 1985).
We attempt to explore concepts that appear
helpful in thinking about the problem. Our
intent is to understand the concepts at an in-
tuitive level rather than to propose a mathe-
matical theory or to describe an implementa-
tion. In this sense, the paper describes “work
in progress” or “ideas in gestation”. Section 2
describes “conditional events” — the basis for
sequential simulation. Then “unconditional
events” — a basis for distributed simulation is
discussed. Two examples are used to illustrate
these concepts: the first is an ultra-simplistic
model of a battlefield, and the second is a
model of a job shop or assembly line [Misra
1986]. The battle field example is used to sug-
gest that the unconditional-event paradigm of
distributed simulation may have limitations.

The concept of “knowledge” in distributed
simulation is introduced in Section 3. The def-
inition employed here is different from the one
employed in the literature on distributed sys-
tems [Chandy and Misra 1986, Halpern and
Moses 1984]. The concept is extended to “con-
ditional knowledge” in Section 4. The con-
cepts of conditional and unconditional knowl-
edge form the framework which is employed to
propose methods of implementing simulations
on parallel machines in Section 5. Section 6
is a conclusion in which we use the framework
to propose desirable properties of distributed
simulators.

2 CONDITIONAL EVENTS AND SE-
QUENTIAL SIMULATION

Consider a sequential simulation of a net-
work of processes. The computation to be
simulated consists of a sequence of “events”,
where an event is a change in (global) system
state. Each event is “initiated” by one pro-
cess, in the sense that the precondition for the
event is determined by the state of precisely
one process. However, the occurrence of the
event may change the states of an arbitrary
number of processes.

A battle between two submarines, for ex-
ample, can be thought of as a network of two
processes where each “sub” is a process. Nei-
ther sub knows where the other one is, but it
may guess the other’s location from informa-
tion such as sonar readings. Firing a missile,
or changing velocity, are examples of events.
Whether a missile is fired by a sub, depends
only on the state of the sub, and does not de-
pend on the state of the total system. In par-
ticular, whether a sub fires a missile, depends
on the information it has obtained from its
sensors about the location of the other sub,
but it does not depend on the actual location
of the other sub. The occurrence of an event
may change the state of the entire system.
Thus, the simulation model allows the firing
of a missile by one sub to destroy the other
sub instantaneously. (It can be argued that
the simulation model is too powerful because
missiles take non-zero time to travel. A more
general argument is that events cause only “lo-
cal” as opposed to global state changes. How-
ever, an event that is initiated at a single pro-
cess, but which may change the states of all
processes, is a useful concept in building mod-
els that are, after all, only approximations of
reality In any case it is not necessary to use all
the power of the simulator.)

The central data structures in a sequential
simulation are the event list and a variable,
“clock”, which is a non-negative integer repre-



senting time. The event list contains one entry
for each process. An entry e is a tuple (e.name,
e.T) where e.name identifies the type of the
event, and e.T is a non-negative integer repre-
senting time, where e.T' > clock. The meaning
of an entry (e.name, e.T") corresponding to a
process p is as follows:

For all ¢’ where clock <=t/ <e.T:

IF all other processes do not initiate events
in the interval (clock, ¢')

THEN no event is initiated by p in the in-
terval (clock, ¢/ +1)
and

IF all other processes do not initiate events
in the interval (clock, e.T')

THEN p initiates event e.name at time e.T".

Note: the interval (clock, ¢') is the open in-
terval, i.e., it is the interval after clock and
before ¢'. The action taken by a process at
time ¢ may depend on actions of processes at
times earlier than ¢, but it does not depend
on actions of other processes at time ¢ (where
an action is either initiating a specific event or
not initiating any event). It follows that the
time at which the next event is initiated is the
smallest value of e.T" over all events e in the
event list.

Sequential simulation is a repetition of the
following sequence of actions:

o Determine the entries e in the event list
with the smallest e.T;

e execute these events, i.e., change the sys-
tem state appropriately;

e recompute the entry in the event list cor-
responding to each process.

In a sequential simulation of the subma-
rine battle, the event list consists of an entry

(e.name, e.T') for each sub, where e.T is the

time at which the sub next initiates an event

provided the other sub does not initiate an
earlier event. The simulation proceeds by exe-
cuting the event corresponding to the smaller
of the e.T values, and executing an event may
change the states of both subs. The new entry,
in the event list, for each sub is then recom-
puted. The cycle is then repeated.

Consider a direct implementation of the se-
quential simulation of the submarine battle on
a parallel machine with two processors, with
one processor for each sub. The first step is
to determine which of the two processors has
the smaller value of e.T. The processor with
the smaller e.T' communicates the correspond-
ing e.name to the other processor. Both pro-
cessors determine their next states in parallel,
and both processors recompute their new en-
tries in the event list in parallel.

The structure of the computation is as fol-
lows:

e determine the minimum over all entries e
in the event list of e.T,

e broadcast the name of the next event to
all processors,

e and each processor determines its new
state and event-list entry in parallel.

In general, if an event changes the states
of most of the processes, then parallelism can
be exploited in the computations of the next
states of the processes. On the other hand, if
an event changes the states of a very small
fraction of the processes, then there is less
scope for exploiting parallelism with this ap-
proach. Let us next consider the simulation
of quite a different system to get a better un-
derstanding of the limits of directly mapping
sequential simulation programs on parallel ar-
chitectures.

A simple job-shop consists of a source of jobs
followed by a sequence of queues, represent-



ing workstations, followed by a job sink. A
diagrammatic representation, where W repre-
sents a workstation is given next.

source =+ W — W — W — sink

Assume that each workstation processes the
jobs it receives in the order received. In the
simulation there are processes corresponding
to the source, the sink and to each of the
workstations. An event is a transmission of
a job, from the source to a workstation, be-
tween workstations, or from a workstation to
the sink. Obviously an event in the job-shop
changes the state of precisely two processes. A
direct implementation of the sequential simu-
lation of a job shop on a parallel architecture
is not likely to result in substantial speed-up,
because there are at most two processors exe-
cuting at any time. Even if we were simulating
a job shop with a large number of workstations
on a parallel architecture with one processor
for each workstation, we would not expect to
do better than double the speed of a sequential
simulation.

The moral of this little discussion is the ob-
vious one—whether a given method of dis-
tributed simulation works efficiently depends
on the sytem being simulated.

Let us generalize the event list to have two
kinds of entries: unconditional entries and
conditional entries. The entries e, in the event
list, described earlier, are conditional entries.
An unconditional entry u, in the event list, is
a tuple (u.name, u.T") where u.name identifies
the event and u.T is a time and u.T' > clock.
The meaning of the entry is as follows: an un-
conditional entry (u.name, u.T') for a process p
means that process p will not initiate an event
in the interval (clock, u4.T) and process p ini-
tiates event u.name at time u.T"; furthermore,
the actions taken by process p in the interval
(clock, u.T] are INDEPENDENT of the ac-

tions taken by other processes in the interval.
The critical difference between unconditional
and conditonal entries is that in the case of
a conditional entry (e.name, e.T") for a pro-
cess p, the actions taken by p in the inter-
val (clock, e.T) MAY DEPEND on the actions
of other processes in the interval (clock, e.T).
Of course, every unconditional entry may be
treated as a conditional entry, but conditional
entries cannot (in general) be treated as un-
conditional entries.

We introduce a special event called the null
event, which does not change the state of the
system. Thus if there is an unconditional en-
try (u.name, u.T") for a process p, in the event
list, where u.name is the null event, then it
means that process p does not execute any
“real” event in the interval (clock, u.T], where
(clock, u.T1 is the interval that excludes clock,
but includes u.T.

Consider the source in the job-shop exam-
ple. The events it initiates correspond to the
jobs that arrive at the shop. Presuming that
job arrivals do not depend on the manner in
which jobs are processed in the shop, the ac-
tions taken by the source do not depend on
the actions of other processes. Therefore, all
the entries in the event list corresponding to
the source are unconditional events. Further-
more, the source may produce a stream of un-
conditional entries corresponding to the times
at which a stream of jobs arrives at the shop.
There is no reason for the execution of the sim-
ulator of the source to depend on the execution
of the simulator of any other process (provided
that there is enough memory to store the un-
conditional entries).

Now consider a workstation in the job-shop.
Assume that with each job is a work-order that
specifies the amount of processing time that
the job requires at the workstation. If a work-
station is processing a job at some time, then



we know the time at which the workstation
will complete processing the job, and this time
is independent of the actions taken by other
processes. Therefore, all entries representing
the movement of jobs are unconditional.

Are there any conditional entries in a se-
quential simulation of a job-shop? Yes: A
process simulating an idle workstation posts
a conditional entry (null, infinity) to indicate
that IF the workstation does not receive any
more jobs THEN the workstation will not out-
put any more jobs.

One way of simulating a job-shop on a par-
allel machine is as follows. The event list con-
tains a stream (a queue) of unconditional en-
tries from each process. Each queue of entries
in the event list corresponds to a queue of jobs
for a workstation. The processor simulating
a workstation removes the entry at the head
of its input queue, and processes it, i.e., adds
an enfry to its output queue. For example,
if the entry at the head of the input queue is
(u.name, t) where u.name is a work-order that
specifies that the job gets ¢ units of processing
time at the workstation, and if the workstation
is idle at time ¢, then the processor simulating
the workstation puts (u'.name, t + ¢') in its
output queue, where u'.name describes the re-
maining work-order for that job. No synchro-
nization is necessary. If at time ¢, the work-
station has ¢” units of processing to complete
before it can get to the newly arrived job, then
the processor outputs (u’.name,t + t' +¢").

This method is faster than executing the
simulation on a sequential processor. Indeed,
this simulation is ideal for a pipeline architec-
ture with one stage in the pipeline simulating
one process in the job-shop. Once the pipe is
full, a great deal of concurrency is exploited.

Now let us attempt to use unconditional en-
tries, exclusively, for the battlefield problem.

How far can we predict the actions taken by
one sub, that are independent of the actions
taken by the other sub? One presumes that
in a battleficld, one sub monitors the other
continuously, and therefore the only prediction
that we can make about one sub, given ONLY
the state of that sub, is what actions it will
take in the very next instant. In other words,
an unconditional entry is limited to the form
(u.name, u.T') where u.T = (clock+1). To pre-
dict the behavior of one sub over a longer hori-
zon, we need to have information about both
subs.

The unconditional-entry approach, applied
to the battlefield, results in the following type
of computation: The event list consists of two
entries, one unconditional entry per sub. Each
of the entries is of the form (u.name, u.T)
where u.T' = (clock +1). Each process com-
putes its state at time clock+-1, then the clock
is incremented by 1, and each process deter-
mines its new unconditional entry (u.name,
u.T'), where unfortunately, u.T" = (clock+1).
The resulting computation is a time-driven
simulation: each step of the computation cor-
responds to incrementing the clock by 1. Sim-
ulating the battlefield, using unconditional en-
tries alone, on a parallel processor may result
in slower execution than discrete-event simu-
lation on a sequential processor.

What have we learned from these exam-
ples? The approach of using conditional en-
tries alone, appears appropriate for parallel
discrete-event simulation of our example of the
battlefield. The approach of using uncondi-
tional entries alone, appears appropriate for
parallel simulation of our example of a job-
shop. Time-driven simulation is inherently
parallel, and indeed it may be the simula-
tion method of choice because, in many sys-
tems, the state changes continuously over time
rather than at discrete instants.



It seems apparent that a simulation method
that combines conditional and unconditional
entries is worth studying because it is likely
to be efficient for a wider class of problems.
Before exploring this possibility let us define
“knowledge in distributed simulations”, and
use the concept to gain insight into the prob-
lem of distributed simulation.

3 KNOWLEDGE AND SIMULATION

Our goal, in this section, is to gain an un-
derstanding of what makes for efficient dis-
tributed simulations. However, to gain this
understanding, we shall define some terms for-
mally. For brevity, the system that is being
simulated is referred to as “the system”. The
processes in the systém are called physical pro-
cesses (or PPs) to distinguish them from pro-
cesses in the simulator. A system is a set of
PPs and a set E of events. Set E includes
the null event. A PP is a set S of process
states, an initial state in that set, an initial
event (which is an element of E), a next- state
function f, and a next-event function g, where:

fuSxD-=S5,

where D is the powerset of E,
gu:SxD—E.

The meaning of f is as follows. If the PP is
in state s at some time ¢, and the set of events
d occurs at time ¢, then the state of the PP,
at time ¢t 41 is f(s,d). The meaning of g is as
follows. If the PP is in state s at time ¢, and
the set of events d occurs at time ¢, then the
PP initiates event g(s,d) at time ¢ + 1. Note
that g(s,d) may be the null event. A PP is in
its initial state and initiates its initial event at
time 0.

The PPs we have defined are determinis-
tic: their future behaviors are functions of

their histories. In the real world, PPs may
be nondeterministic; for example a PP may
toss a coin to determine whether to initiate
one event or another. In a simulator, ran-
domness is modeled by employing a pseudo-
random number generator. Given the value
of the seed of a pseudo-random number gen-
erator, the sequence of numbers generated is
deterministic. Given the values of the seeds,
each execution of a simulator is deterministic.
In analogy, we define a PP in terms of a sin-
gle behavior, though in reality it may exhibit
many behaviors.

For example, a partial specification of a sub-
marine in a simplistic video game is as follows.

S = {on, off}
E = {null0, fire0, nulll, firel}

where null0, fire0 means that sub0 initiates the
null event, fires a missile respectively; nulll,
firel are analogous events for subl.

f(off,d) = off for all d

f(on, {null0,nulll}) = on
f(on, {null0, firel}) = off
f(on, {fire0, null1}) = on
f(on, {fire0, fire1}) = on

Thus the submarine we are defining has the
property that once it is “off” it remains “off”,
and if it is “on” it remains “on” except for
the case that it does not fire and the other sub
does. (Presumably, if both subs fire simultane-
ously, the missiles destroy each other without
damaging the subs, which seems to occur quite
often in video games.)

A system state is a tuple; its components
are process states. The behavior of the system



is an array B[0...N], where N is the time-
horizon of the simulation; the elements of the
array are pairs (r,d) where r is a system state,
and d is a set of events. The meaning of a
behavior is as follows. If B[j] is (r,d) then
the state of the system at time j is r, and the
set of events that occur at time j is d. At
time 0, each process is in its initial state and
initiates its initial event. Since the PPs are
deterministic, the system admits only one be-
havior. We leave it to the reader to develop an
algorithm to compute the system behavior B
given the specifications of the PPs; the obvi-
ous solution is to compute B[j + 1] after com-
puting B[0. .. j]. This solution corresponds to
a time-driven simulation.

Our problem is to design a simulator to de-
termine the system behavior rapidly. There
are no restrictions on our design. For instance
we permit our programs to fill in several ele-
ments of array B in parallel, or to start with
filling in the middle element.

A simulation is an execution of the simu-
lator. A simulation is a sequence of computa-
tional steps and we do not interpret the mean-
ing of a computational step. A simulation may
be the sequence of computational steps carried
out on a sequential machine, or an interleaving
of computational tional steps carried out on a
distributed machine or the sequence of syn-
chronous operations carried out by a parallel
synchronous machine. A point in the simula-
tion is an integer j, which represents an instant
in the unfolding of the simulation in which the
first j steps of the simulation have been exe-
cuted and the remaining steps have not been
executed.

A simulator consists of one or more pro-
cesses, called simulator processes (or SPs) to
distinguish them from physical processes (or
PPs) in the system that is being simulated.
There need be no correspondence between SPs

and P Ps. In a sequential simulation there may
be only one SP. In a two processor machine
there may be two SPs. We place no restric-
tions on SPs because our goal is to obtain a
general understanding of all simulators, rather

-than to understand a particular implementa-

tion of a distributed simulator. (Note: in most
implementations there is one SP correspond-
ing to each PP, but there is no reason to re-
strict our design to have a correspondence be-
tween processes in the system that is being
simulated and processes in the simulator.)

Let b be a predicate on the system behavior.
For example, b may be: B[5] is (r,d) where d
includes the event "fire1”, and the state of PP
0 in r is “on”.

Define a relation “knows” between SPs,
predicates on system behavior and points in
the computation, as follows:

g knows b at j, where g is an SP,bis a
predicate on the behavior, and j is a point in
the simulation, means that b can be deduced
given only the state of ¢ at j, and the specifi-
cation for q.

EXAMPLE: Consider the example of the
time-driven simulation of the submarine bat-
tle. Assume that there is one SP for each sub.
An SP has the specification of one sub, but
has no information about the other. If the
clock has value ¢, and an SP has obtained the
event that is executed by the other sub at time
t, then by employing its function f its state at
time ¢+ 1 can be determined, and by employ-
ing its function g the event it initiates at time
t + 1 can be determined. Therefore the SP
knows its state at time ¢ + 1 and it knows the
event it initiates at time ¢ + 1. Unfortunately,
the SP does not know anything about the be-
havior at times after ¢+1 because that depends
on the specification of the other sub. To gain
knowledge about times later than ¢+ 1 the SP
must receive information from the other SP.



Therefore, the concept of knowledge gives us
an idea of the amount of information transfer
required in this case. Informally speaking, in
this example a great deal of information trans-
fer is required because a process has limited
knowledge.

EXAMPLE: Next consider the job-shop
example. Assume that there is one SP for
each workstation and each SP has the speci-
fication of the corresponding workstation, but
does not have the specification of any other
workstation. Assume that at some point in
the simulation an SP simulating a workstation
has the following information: a job requiring
10 units of service arrives at the empty work-
station at time 5, and a job requiring 20 units
of service arrives at the workstation at time 6.
At this point in the simulation the SP knows
that the workstation outputs no jobs in the in-
terval (5,15), it outputs one job at 15 and the
following one at 35. Thus the SP can carry
out this computation without receiving infor-
mation from other SPs.

EXAMPLE: Consider the example of the
battle again, except that one SP has the
specification for both subs. In this case, the
SP knows the entire system behavior ini-
tially. The SP needs no additional informa-
tion. Thus we draw a distinction between
what an SP knows and what it has computed.

In designing efficient parallel simulators, we
often tradeoff what an SP knows with the
amount of computation it does. In a sequen-
tial simulation, the single SP knows the en-
tire behavior initially, and an execution of the
simulator consists of the SP computing what
it knows. In a time-driven simulation, with
one SP per PP, an SP only knows the be-
havior at the next value of the clock. Again
speaking very informally, in an efficent sim-
ulation, by the time an SP computes what

it knows, additional information arrives to in-
crease its knowledge. If an SP’s knowledge
stays ahead of what it has computed then the
SP need not become idle waiting for informa-
tion. Some of the tuning that is done in mak-
ing distributed systems more efficient—for in-
stance in “packaging” the simulation of several
PPs on the same processor—consists of spec-
ifying SPs so that an SP’s knowledge stays
ahead of its computation. This form of pack-
aging SPs has a susbstantial impact on the
performance of a distributed simulator.

Next we shall extend our definition of knowl-
edge to “conditional knowledge” and then at-
tempt to use our insight to design distributed
simulators.

4 CONDITIONAL KNOWLEDGE

Consider the example of the submarine bat-
tle once again. Suppose the specification of
sub0 is that it will fire its first missile at time
10 if it is not destroyed earlier. Suppose there
is an S P that has the specification of sub0, and
has no other information. What does the SP
know when the simulation is initiated? Ac-
cording to our definition of “knows”, when the
simulation is initiated, the SP knows the state
of sub0 at time O and the event initiated by
sub0 at time 0. The SP does not know the
state of sub0 at time 1 because it does not
know the event initiated by the other sub at
time 0. In particular the SP does not know
whether sub0 fires it first missile at time 10.
What else does the SP know initially? The
SP knows -

“sub0 is not destroyed. in the interval (0,10)
implies
sub0 fires its first missile at time 10”.

We define a ternary relation “conditionally-
knows” between an SP, two predicates on the



system behavior and a point in the simulation:

q conditionally-knows b given b’ at j
where ¢ is an SP, b and ¥ are predicates on
the system behavior, and j is a point in the
simulation, means

q knows (¥ = b) at j. In our sub-
marine example, the SP conditionally-knows
“sub0 fires its first missile at time 10” given
“sub0 is not destroyed in the interval (0, 10)”
at 0, i.e., at initiation of the simulator. The
concept of conditional knowledge is not a new
concept at all; but we dignify knowledge of
predicates of the form “¥ implies b” with a
special name, because this form of knowledge
plays an important role in simulation.

Conditional knowledge may not appear use-
ful in itself. However, as a simulation pro-
ceeds, conditional knowledge can, sometimes,
be converted to knowledge. How can condi-
tional knowledge be converted to knowledge?
Obviously, if ¢ conditionally-knows b given b’
at j, and ¢ knows b’ at j, then ¢ knows b at
Jj. Informally speaking, conditonal knowledge
and some knowledge can yield more knowl-
edge. Also conditional knowledge and more
conditional knowledge can yield knowledge.
For example, if an SP conditionally-knows
that sub0 fires its first missile at time 10 given
that it is not destroyed earlier, and the SP
also conditionally- knows that subl fires its
first missile at time 20 given that it is not de-
stroyed earlier, then the SP also knows that
sub0 fires its first missile at time 10 (assum-
ing that a sub is destroyed only if the other
fires). Indeed, this conversion of conditional
knowledge to knowledge forms the basis for
sequential simulation.

Now let us use our insight to explore some
methods of distributed simulation.

5 EXPLORING METHODS FOR DIS-
TRIBUTED SIMULATION

Our goal here is to suggest that the concepts
of knowledge and conditional knowledge may
be useful in the design of distributed simula-
tions. We do not imply that the algorithms
proposed here are better than others or even
that they are original. Another goal here, is
to use the concept of knowledge, coupled with
that of computation, to get a VERY ROUGH
idea of the efficiency of an approach without
doing a great deal of empirical testing.

5.1 Each SP starts with # different
initial state

Consider a simulator in which there are
two SPs where SP0O has the specification
for all PPs, and SP1 has the specifica-
tion for all PPs, except that in place of
the initial states and events, SP1 has some
other values—let’s call these values X. SP1
carries out a simulation starting with ini-
tial values X. Suppose SP1 has computed
a sequence of (states, event-sets) tuples—
(r0,d0),(r1,d1), (r2, d2)—where (x0,d0) cor-
responds to X. Now SP1 conditionally-knows
B[j +1..j + 2] = (r1,d1),(r2, d2) given that
B[j] = (r0,d0), where B is the system be-
havior. In other words, SP1 conditionally-
knows the behavior at j + 1 and j + 2 given
that the behavior at j is the initial value em-
ployed by SP1. Here SPQ knows the entire
behavior—it needs no information from SP1.
The following approach to distributed simu-
lation can be taken. Both SP’s compute in
parallel. If SP0 has computed a j such that
B[j] = (r0,d0), then it sends the value of j to
SP1. Upon receiving this value, conditional
knowledge in SP1 is converted to knowledge,
and this knowledge has already been com-



puted by SP1.

This example illustrates that it may be
efficient for an SP to compute conditional-
knowledge because the values computed may
turn out to be knowledge.

5.2 Messages with conditional and
unconditional information

Consider a closed loop of two workstations.
The output of each station feeds the input of
the other. Each station has a single server.
There are a fixed number of jobs in the sys-
tem and each job cycles repeatedly through
the two work- stations. There are two priori-
ties of jobs. A job may switch priority when it
completes service at a station. Whether a job
switches priority is determined by the work-
station at which it completes service.

The simulator has two SPs, one for each
workstation. Suppose an SP knows that at
time ¢ a workstation is serving a high-priority
job that requires ¢’ additional units of service;
then the SP knows that the workstation will
output the job at time ¢ +¢'.

Now suppose that an SP knows that at time
t a workstation is serving a low-priority job
that requires ¢ additional units of service, and
no high-priority job arrives at the station at
time ¢. Then, if ¢’ > 1 and all jobs require at
least one unit of service, then the SP knows
that the work- station does not output a job
at time ¢ + 1; this is because it cannot out-
put the low-priority job that it is serving at
least until ¢ + ¢/, and if a high-priority job ar-
rives at time ¢ + 1, it cannot output that for
at least one additional time unit. The SP also
conditionally-knows that the next job out- put
by the workstation is at time ¢ + ¢/ given that
no high- priority job arrives at the workstation
in the interval (¢,¢ +t').

Let us design the simulator so that the SPs
exchange information about both knowledge
and conditonal knowledge. For example as-
sume that SP0, SP1 are simulating worksta-
tions W0, W1 respectively. Assume that SP1
conditionally-knows that W1 outputs no high-
priority job in the interval (¢,¢) given that
W0 outputs no high-priority job in that inter-
val. Also assume that SP0 sends a message to
SP1 after receiving which, SP1 conditionally-
knows W0 outputs no job in (¢+1, t+¢') given
W1 outputs no high-priority job in that inter-
val. Upon receipt of the message, SP1 knows
that W1 outputs no high-priority job in the
interval (¢,t’).

In this example, the exchange of both condi-
tional and unconditional information is helpful
in allowing the simulation to progress.

This approach can be extended to an ar-
bitrary network. In the worst case, this ap-
proach reduces to a sequential simulation.
Therefore, this approach has the advantage
of significant speed-up on parallel machines in
some applications and of being no worse than
sequential simulation for all applications.

5.3 Deadlock

It is interesting to interpret deadlock, from
the point of view of knowledge. A pro-
cess waits when it has computed everything
it knows. All processes wait—i.e., remain
deadlocked—if each process has computed ev-
erything it knows. “Breaking deadlock” means
that some external process supplies informa-
tion to the set of deadlocked processes that
results in at least one of them gaining knowl-
edge, and the process then continues compu-
tation. The [Chandy, Misra 1981] paper can
be interpreted in this way.



5.4 Optimistic Computations

Many ways of implementing optimistic com-
putations [Jefferson 1985] become apparent
when we try to understand distributed sim-
ulation from the point of view of conditional
knowledge.

A process that has computed everything it
knows may wait to receive additional infor-
mation, or it may proceed to compute con-
ditional knowledge. A pessimistic computa-
tion is one where a process only computes
what it knows. An optimistic computation
is one in which a process may also com-
pute what it conditionally-knows. (Pessimistic
computations may also use conditional knowl-
edge, because—as described in Section 5.2—
conditional knowledge may be converted to
knowledge.) The advantage of optimistic com-
putations is that an SP never waits.

Consider a simulator in which all condi-
tional knowledge that is computed is clearly
identified as conditonal knowledge (as dis-
tinguished from knowledge). For example if
a simulator of a job-shop determines that a
work- station W outputs a job at time t given
that it receives no high-priority job in the in-
terval (z,t’), then this result is stored in mem-
ory exactly in the form of conditional knowl-
edge, i.e., in the form b given b’ where b is “W
out- puts a job at time ¢’ and ¥ is “W receives
no high- priority job in the interval (z,t)”.
Now suppose that as the simulation unfolds, it
is determined that W receives a high-priority
job in the interval (2,t). Does the conditional
knowledge have to be discarded?

There is no reason to discard conditional
knowledge except the practical reason that
there is insufficient memory to store the con-
ditional knowledge that has been computed.
It is not as though conditional knowledge be-

comes “false” and therefore must be erased to
restore the system to a correct state. In our
example, it is always the case that W outputs
a job at time ¢ given that it receives no high-
priority job in the interval (z,t), even if W
does receive a high-priority job in the interval.

What are the disadvantages of optimistic
computations? In many simulators, an SP
does not record everything it knows. For in-
stance, an SP may not recored the entire state
of a workstation because it may not be neces-
sary to determine the entire behavior—it may
be sufficient to determine some attributes of
the behavior, such as “what is the average
time spent by jobs in the job-shop”? When an
SP starts computing conditional knowledge, it
must distinguish conditional knowledge from
knowledge; in particular, it may have to save
the entire state of the processes that it is sim-
ulating, because this state is knowledge rather
than conditional knowledge. Saving the state
(and then copying the saved state) may be a
considerable overhead. The extent of the over-
head depends on the system being simulated.
The overhead may outweigh the advantages of
not waiting.

5.5 Processing Conditional Knowl-
edge

Conditional knowledge can be processed in
many ways. Consider the following example.
The system to be simulated consists of three
processes u.i, i = 0,1,2, connected in a cy-
cle, where the events initiated by process u.i
may modify the states of processes u.i and
u.(i + 1)mod3. There are three SPs: SP.,
i = 0,1,2, corresponding to the u.i. Suppose
SP.1 receives a message from SP.0 that the
first event .0 initiates is at time 10 given that
4.2 initiates no event before time 8. Suppose



that initially SP.1 conditionally-knows u.1 ini-
tiates its first event at time 20 given 4.0 ini-
tiates no event before time 5. Upon receipt
of the message from SP.0, SP.1 conditionally-
knows u.1 initiates its first event at time 20
given u.2 initiates no event before time 5 (be-
cause if 4.2 initiates no event before time 5
then—from the message from SP.0—u.0 ini-
tiates no event before time 5 in which case—
from S P.1’s initial conditional knowledge—u.1
initates its first message at time 20). SP.1
sends this conditional knowledge to SP.2.

Now suppose that initially SP.2
conditionally-knows that u.2 initiates its first
event at time 12 given u.1 initiates no event be-
fore time 9. Upon receiving the message from
SP.1 that u.1 initiates its first event at time
20 given u.2 initiates no event before time 5,
SP.2 gains the knowledge that u.2 initiates its
first event at time 12.

This little example illustrates that there are
many ways of processing conditional knowl-
edge.

6 CONCLUSION

The goal of this paper is to suggest that
we may have been unnecessarily restrictive in
the way we think about distributed simula-
tion. We attempted to develop a framework in
terms of knowledge to free ourselves from un-
necessarily restrictive modes of thought. As a
consequence, different methods of distributed
simulation suggested themselves. Of course,
the methods could have been thought of with-
out the aid of the concept of knowledge. We
hope, however, that the concept is useful in
designing simulators.

In our opinion the success of distributed

simulation depends, in large part, on our abil-

ity to exploit properties of the system that is

being simulated. For example using only con-
ditional knowledge (as in sequential simula-
tion), or using only unconditional knowledge
(as in some methods of distributed simula-
tion), does not exploit properties of the system
to the fullest. We think that there is a better
chance of achieving efficiencies on parallel pro-
cessors by employing both forms of knowledge.
Indeed, there may be other types of knowledge
that can be exploited for specific applications.

A problem that has been receiving a lot of
attention lately is that of designing “general
purpose” distributed discrete-event simulators
in which the processes in the system to be sim-
ulated are treated as “black boxes”. In our
opinion, the efficiency of such simulators de-
pends on the interfaces to the black boxes.
If a black box merely specifies what the cor-
responding process does during the next in-
cremental interval of time, then the simula-
tion reduces to a time-driven simulation. If a
black box only specifies unconditional knowl-
edge then the resulting simulator may be inef-
ficient, as suggested in our battlefield example.

If a black box only specifies conditional knowl-

edge, then the resulting simulator may be inef-
ficient, as suggested by our job-shop example.

The problem is to trade-off the “general pur-
pose” nature of the simulator on the one hand
with efficiency. If we insist that a general-
purpose simulator is one that has very little in-
formation about the system being simulated,
then we may have to pay the price in terms
of efficiency. On the other hand, we cannot
afford to propose a new method for simula-
tion for each new application. The concepts
of knowledge and conditional knowledge may
help in defining an interface that does not ex-
pose too much of what is in the black boxes,
and also results in simulators that are efficient.



This paper is extremely informal. A great
deal of work remains to be done to define the
concepts proposed here formally, to explore
new concepts that will help further in freeing
us from narrow modes of thought about simu-
lation, in specifying the interfaces to the black
boxes of general- purpose simulators, and in
implementing the ideas on parallel machines.
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